尼采般地抒情

尼采般地抒情

尼采般地抒情

音乐盒

站点信息

文章总数目: 321
已运行时间: 1782

清洗数据:删除指定数据、处理缺失数据etc


一、数据预览:tail()、head()


import numpy as np
import pandas as pd
df_obj = pd.DataFrame(np.random.randn(5,4), columns = ['a', 'b', 'c', 'd'])
print(df_obj.tail())# 数据预览尾巴
print(df_obj.head())# 数据预览头部


          a         b         c         d
0 -0.507788  0.213237  0.003150 -0.777312
1 -0.896653 -2.188016 -0.114848  0.167057
2 -1.131242 -0.142287 -1.027330  1.861814
3  0.369608  0.823453  1.030830 -0.041778
4 -0.647625  0.056791 -0.394078 -1.347718
          a         b         c         d
0 -0.507788  0.213237  0.003150 -0.777312
1 -0.896653 -2.188016 -0.114848  0.167057
2 -1.131242 -0.142287 -1.027330  1.861814
3  0.369608  0.823453  1.030830 -0.041778
4 -0.647625  0.056791 -0.394078 -1.347718


二、数据描述:shape、info()


print ('数据集有%i行,%i列' %(df_obj.shape[0], df_obj.shape[1]))


数据集有5行,4列


print(df_obj.info())


<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 4 columns):
a    5 non-null float64
b    5 non-null float64
c    5 non-null float64
d    5 non-null float64
dtypes: float64(4)
memory usage: 288.0 bytes
None


三、数据统计:describe()


print(df_obj.describe())


              a         b         c         d
count  5.000000  5.000000  5.000000  5.000000
mean  -0.562740 -0.247365 -0.100455 -0.027587
std    0.573191  1.143294  0.747673  1.215808
min   -1.131242 -2.188016 -1.027330 -1.347718
25%   -0.896653 -0.142287 -0.394078 -0.777312
50%   -0.647625  0.056791 -0.114848 -0.041778
75%   -0.507788  0.213237  0.003150  0.167057
max    0.369608  0.823453  1.030830  1.861814


四、pandas不完全显示行列


pd.set_option('display.max_rows', 100)        //显示的最大行数(避免只显示部分行数据)
pd.set_option('display.max_columns', 1000)    //显示的最大列数(避免列显示不全)
pd.set_option("display.max_colwidth", 1000)   //每一列最大的宽度(避免属性值或列名显示不全)
pd.set_option('display.width', 1000)          //每一行的宽度(避免换行)


五、删除指定行列数据


import pandas as pd
import numpy as np


dict_data = {'A': 1., 
             'B': pd.Timestamp('20161217'),
             'C': pd.Series(1, index=list(range(4)),dtype='float32'),
             'D': np.array([3] * 4,dtype='int32'),
             'E' : pd.Categorical(["Python","Java","C++","C#"]),
             'F' : 'ChinaHadoop' }
df_obj2 = pd.DataFrame(dict_data)
print(df_obj2)


     A          B    C  D       E            F
0  1.0 2016-12-17  1.0  3  Python  ChinaHadoop
1  1.0 2016-12-17  1.0  3    Java  ChinaHadoop
2  1.0 2016-12-17  1.0  3     C++  ChinaHadoop
3  1.0 2016-12-17  1.0  3      C#  ChinaHadoop


del


删除列


del df_obj2['A'] 
print (df_obj2.head())


           B    C  D       E            F
0 2016-12-17  1.0  3  Python  ChinaHadoop
1 2016-12-17  1.0  3    Java  ChinaHadoop
2 2016-12-17  1.0  3     C++  ChinaHadoop
3 2016-12-17  1.0  3      C#  ChinaHadoop


drop


删除行/列数据


dict_data = {'A': 1., 
             'B': pd.Timestamp('20161217'),
             'C': pd.Series(1, index=list(range(4)),dtype='float32'),
             'D': np.array([3] * 4,dtype='int32'),
             'E' : pd.Categorical(["Python","Java","C++","C#"]),
             'F' : 'ChinaHadoop' }
df_obj3 = pd.DataFrame(dict_data,index = ['sfd','sdfd','wer','rwer'])
print (df_obj3.head(7))
print(df_obj3.drop('wer'))#删除行
print(df_obj3.drop('F',axis=1))#删除列


        A          B   C  D       E            F
sfd   1.0 2016-12-17 NaN  3  Python  ChinaHadoop
sdfd  1.0 2016-12-17 NaN  3    Java  ChinaHadoop
wer   1.0 2016-12-17 NaN  3     C++  ChinaHadoop
rwer  1.0 2016-12-17 NaN  3      C#  ChinaHadoop
        A          B   C  D       E            F
sfd   1.0 2016-12-17 NaN  3  Python  ChinaHadoop
sdfd  1.0 2016-12-17 NaN  3    Java  ChinaHadoop
rwer  1.0 2016-12-17 NaN  3      C#  ChinaHadoop
        A          B   C  D       E
sfd   1.0 2016-12-17 NaN  3  Python
sdfd  1.0 2016-12-17 NaN  3    Java
wer   1.0 2016-12-17 NaN  3     C++
rwer  1.0 2016-12-17 NaN  3      C#


六、处理缺失数据


df_data = pd.DataFrame([np.random.randn(3), [1., np.nan, np.nan],
                       [4., np.nan, np.nan], [1., np.nan, 2.]])
df_data.head()


0

1

2

0

-0.702713

-0.991383

-1.058464

1

1.000000

NaN

NaN

2

4.000000

NaN

NaN

3

1.000000

NaN

2.000000


判断是否存在缺失值


df_data.isnull()


0

1

2

0

False

False

False

1

False

True

True

2

False

True

True

3

False

True

False


丢弃缺失数据


print(df_data.dropna(axis=0))
#0是行;1是列


          0         1         2
0 -0.702713 -0.991383 -1.058464


填充缺失数据


df_data.fillna(-100.)


0

1

2

0

-0.702713

-0.991383

-1.058464

1

1.000000

-100.000000

-100.000000

2

4.000000

-100.000000

-100.000000

3

1.000000

-100.000000

2.000000


评论区

什么都不舍弃,什么也改变不了