一、基本结构
神经网络基本结构
何为深度学习?
二、感知器和激活函数
感知器
激活函数(其中w和x为向量点乘;b为偏置,w0)
激活函数的选择
三、感知器的训练
四、简单代码实现
from functools import reduce class Perceptron(object): ''' 构造函数的初始化 ''' def __init__(self,input_num,activator): ''' 构造函数的初始化 ''' self.activator = activator self.weights = [0.0 for _ in range(input_num)] self.bias = 0.0 def __str__(self): ''' 打印学习后的权重值和偏置项 ''' return 'weights\t:%s\nbias\t:%f\n' %(self.weights,self.bias) def predict(self,input_vec): ''' 输入向量,输出感知器的计算结果 ''' return self.activator( reduce(lambda a,b: a+b, list(map(lambda x,w: x*w, input_vec,self.weights) ),0.0)+self.bias) def train(self,input_vecs,labels,iteration,rate): ''' 输入训练数据:一组向量、与每个向量对应的label;以及训练轮数、学习率 ''' for i in range(iteration): self._one_iteration(input_vecs,labels,rate) def _one_iteration(self,input_vecs,labels,rate): ''' 迭代,把所有的训练数据过一遍 ''' samples = zip(input_vecs,labels) for (input_vec,label) in samples: output = self.predict(input_vec) self._update_weights(input_vec,output,label,rate) def _update_weights(self,input_vec,output,label,rate): ''' 按照感知器规则更新权重 ''' delta = label - output self.weights = map( lambda x, w:w+rate*delta*x, input_vec,self.weights) self.weights = list(self.weights) self.bias += rate*delta def f(x): ''' 定义激活函数 ''' return 1 if x>0 else 0 def get_training_dataset(): ''' 训练数据 ''' input_vecs = [[1,1],[0,0],[1,0],[0,1]] labels = [1,0,0,0] return input_vecs,labels def train_and_perceptron(): ''' 训练感知器 ''' p = Perceptron(2,f) input_vecs,labels = get_training_dataset() p.train(input_vecs,labels,10,0.1) return p if __name__ == '__main__': and_perception = train_and_perceptron() print(and_perception) print('1 and 1 = %d' % and_perception.predict([1,1])) print('0 and 0 = %d' % and_perception.predict([0,0])) print('1 and 0 = %d' % and_perception.predict([1,0])) print('0 and 1 = %d' % and_perception.predict([0,1]))
运行结果:
评论区